Azure Data Engineering Course Curriculum

  • Duration: 2 Months 
  • Mode of Training: Online
  • Batches Available: Morning and Evening
  • Trainer: Corporate Trainer / Lead Data Scientist / Big Data (DataOps / MLOps) Engineer with over 17+ Years of experience (11 Years in the Databases Oracle, MySQL, Sybase, SQL Server & 6 Years in Big Data, Data Science & 6 Years in Corporate Training)

Four Realtime Data Engineering projects

Anyone who wants to join this Azure Data Engineer online training should have a basic understanding of ETL, SQL Server, and Data Analytics.

  • ETL Developers
  • Business Intelligence
  • Professionals
  • Data Analysts
  • Graduates

Topics Covered

  • Chapter 1: Cloud Introduction & Azure Basics

  • Chapter 2: Synapse SQL Pools

  • Chapter 3: Azure Data Factory Concepts

  • Chapter 4: ADF Pipelines & Polybase

  • Chapter 5: OnPremise Data Loads with ADF

  • Chapter 6: ADF Data Flow – 1

  • Chapter 7: ADF Data Flow – 2

  • Chapter 8: Azure Synapse Analytics

  • Chapter 9: Synapse Analytics with Spark

  • Chapter 10: Incremental Loads @ Synapse

  • Chapter 11: Optimizations, Power Query
  • Chapter 12: Pipeline Monitoring, Security

  • Chapter 1: Azure Storage & Containers
  • Chapter 2: Azure Migrations, BLOB Imports
  • Chapter 3: Azure Tables, Shares
  • Chapter 4: Azure Storage Security, Admin
  • Chapter 5: Azure Monitoring, Power BI
  • Chapter 6: Azure Stream Analytics, IoT
  • Chapter 7: IoT Hubs & Event Hubs
  • Chapter 8: Azure Stream Analytics Security
  •  

Chapter 1: Azure Intro, Azure Databricks

Chapter 2: SQL Notebooks & Python

Chapter 3: Python Notebooks

Chapter 4: Scala Notebooks, Transformations

Chapter 5: ADB with Virtual Network

Chapter 6: DeltaLakes & ADF Integration

Chapter 7: Databricks Integrations

 

  • Online Retail Database Data Source; Azure Migrations and ETL Concepts; Azure SQL Pool (Synapse DWH) Tables; Apache Spark Pool: Databases, Tables; Azure Data Lake Storage (ADLS Gen 2); Azure Stream Analytics Jobs with IoT; Azure Data Bricks and DBFS, Notebooks; Big Data Analytics & Power BIReports;

    Project Requirement; Project Solution; Project FAQs; Concept wise FAQs; Resume Guidance; Mock Interviews; DP 203 Certification Guidance;

  • Chapter 1: SQL SERVER INTRODUCTION

  • Chapter 2: SQL SERVER INSTALLATIONS

  • Chapter 3: SSMS Tool, SQL BASICS – 1
  • Chapter 4: SQL BASICS – 2
  • Chapter 5: SQL BASICS – 3, T-SQL Introduction
  • Chapter 6: CONSTRAINTS & INDEXES BASICS

  • REAL-TIME CASE STUDY – 1 (SALES & RETAIL)

    Chapter 7: JOINS and TSQL Queries : Level 1

    Chapter 8: GROUP BY, T-SQL Queries : Level 2

    Chapter 9: JOINS & T-SQL Queries : Level 3

    Chapter 10: View, Procedure, Function Basics

    Chapter 11: Triggers & Transactions

    Chapter 12: ER MODELS, NORMAL FORMS

Chapter 1 : POWER BI BASICS

Chapter 2 : BASIC REPORT DESIGN

Chapter 3 : VISUAL SYNC, GROUPING

Chapter 4 : HIERARCHIES, FILTERS

Chapter 5 : BOOKMARKS, AZURE, MODELLING

Chapter 6 : VISUALISATION PROPERTIES

Chapter 7 : POWER QUERY LEVEL 1

Chapter 8 : POWER QUERY LEVEL 2

Chapter 9 : POWER QUERY LEVEL 3

Chapter 10 : DAX Functions – Level 1

Chapter 11 : DAX Functions – Level 2

Chapter 12 : DAX FUNCTIONS – Level 3

Chapter 13 : POWER BI CLOUD – 1

Chapter 14 : POWER BI CLOUD – 2

Chapter 15 : EXCEL, ROW LEVEL SECURITY

Chapter 16: REPORT SERVER, REPORT BUILDER

Chapter 17: AZURE BI INTEGRATIONS WITH POWER BI

Chapter 18: Real-time Project [Sales & Customers]


Apply to Azure Data Engineering

Shopping Basket